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The purpose of this study was to investigate three second-year graduate students’ 
awareness and understanding of the relationships among the “big ideas” that underlie the 
concept of derivative through modeling tasks and Skemp’s distinction between relational 
and instrumental understanding. The modeling tasks consisting of warm-up, model-
eliciting, and model-exploration activities were used to stimulate participants to reflect and 
construct ideas about the concept of change. The data indicated that the participants’ 
understanding of derivative was rather instrumental. Their explanations couldn’t reveal the 
role of the big ideas regarding the concept of derivative with respect to what they mean, 
why and how they are related to the derivative and to each other. The results highlighted 
the fact that even if one of big ideas is ignored, the concept of derivative may not be fully 
understood relationally due to the compartmentalization of these big ideas in students’ 
conceptual systems. If this happens to be the case, even though students can solve 
differentiation tasks/problems correctly, which implies procedural understanding, they 
may not be actually making sense of what the concept of derivative conceptually means. 
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INTRODUCTION  

      The importance of conceptual understanding, along 
with procedural fluency, has been emphasized as part of 
students’ mathematical proficiency (e.g., see Common 
Core State Standards Initiative, 2010; Kilpatrick, 

Swafford, & Findell, 2001; National Council of 
Teachers of Mathematics, 2000). The major problem 
preventing students from conceptual understanding has 
been highlighted as compartmentalized learning 
(Baroody, Feil, & Johnson, 2007; Berry & Nyman, 2003; 
Galbraith & Haines, 2000; Hiebert & Lefevre, 1987; 
Kannemeyer, 2005). As Berry and Nyman (2003) 
indicated, without opportunities to make connections 
between concepts and the underlying relations, students 
could have compartmentalized learning. This causes 
deficiency in the conceptual understanding of important 
concepts in mathematics (Mahir, 2009). Students could 
fill this deficiency with procedural understanding and 
computation would be regarded as the essential 
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outcome with little conceptual understanding (Aspinwell 
& Miller, 1997). An increasing number of studies in 
mathematics education have begun focusing on 
students’ understanding of fundamental 
concepts/constructs in (school) mathematics, such as 
functions and graphs (Ainsworth, 1999), derivative 

(Haciomeroglu, Aspinwall, & Presmeg, 2010) and limit 
(Szydlik, 2000). Despite its central role in calculus, the 
concept of derivative is epistemologically difficult for 
students (Asiala, Cottrill, Dubinsky, & Schwingendorf, 
1997; Furinghetti & Paola, 1991). Most students have 
conceptual difficulties regarding derivative in terms of 
understanding and giving sense to it (Bezuidenhout, 
1998; Hauger, 2000). For example, even if students can 
give correctly “the slope of the tangent line at a certain 
point on a graph” definition of derivative, they make 
wrong interpretations of this definition (Amit & Vinner, 
1990; Ubuz, 2001). In addition, students have problems 
in conceptualizing and relating the rate of change to the 
concept of derivative (Bezuidenhout, 1998; Heid, 1988; 
Orton, 1983). Another conceptual difficulty is on 
noticing the difference between average rate of change 
and instantaneous rate of change in relating these 
concepts to the concept of derivative (Bingölbali, 2008; 
Orton, 1983). Moreover, students also have difficulty in 
conceptualizing the role of limit in (i) providing an 
algebraic definition of derivative, (ii) understanding how 
the average rate of change approximates to the 
instantaneous rate of change and, (iii) understanding 
how the slopes of the secant lines approximate to the 
slope of the tangent line (Hankiöniemi, 2006; Orton, 
1983). 

A relational understanding of derivative should 
include awareness of the big ideas underlying the 
concept of derivative, namely the rate of change, the 
slope of tangent and the limit, and relations between 
them. Although students can solve differentiation 
problems correctly, they cannot explain derivative by 
relating it to the rate of change, the slope of tangent, 
and the limit (Bingölbali, 2008). As an important reason 
behind these kinds of learning and achievement 
contradictions, many researchers highlighted the role of 
memorizing procedures without understanding the 
underlying big ideas (Henningsen & Stein, 1997; 
Schoenfeld, 1992; Shield, 1998). For most students, 
derivative comprises of excessive amount of 
differentiation rules without reasons (i.e., the 
instrumental understanding) (Bingölbali, 2008; 
Thompson, 1994). From this point of view, considering 
derivative relationally is essential to have its conceptual 
understanding. In this respect, there is a need for studies 
focusing on students’ internal conceptual systems in 
order to see how students understand and relate the 
concepts (Erbas et al., 2014; Clement, 2000; Lakoff & 
Núñez, 2000). Modeling activities, including real-life 
situations, can be used as a valuable guide for this 
purpose, in that model-eliciting activities help teachers 
and researchers to capture their students’ mathematical 
understanding abilities and skills that generally cannot 
be captured while using traditional word problem 
solving activities (Erbas et al., 2014; Lesh, Hoover, 
Hole, Kelly, & Post, 2000). In traditional word problem 

State of the literature 

 Conceptual understanding along with procedural 
fluency has been emphasized as part of students’ 
mathematical proficiency. Students do not usually 
understand the fundamental concepts/constructs 
in (school) mathematics conceptually unless they 
have opportunities to make connections between 
concepts and the underlying relations.  

 Despite its central role in calculus, the concept of 
derivative is epistemologically difficult for students. 
Most students have conceptual difficulties 
regarding derivative in terms of understanding and 
giving sense to it. 

 Mathematical modeling tasks requiring tackling 
with the big ideas underlying a concept are seen as 
a valuable guide in order to observe and 
understand students’ ways of thinking. 

 There is a need for studies focusing on students’ 
externalization of their thinking and externalization 
of their conceptualization steps in problem 
situations. 

Contribution of this paper to the literature 

 This study argues that the concept of derivative 
should be introduced and developed in relation to 
the rate of change, the slope of tangent, and the 
limit. Because, unless a mathematical concept is 
understood relationally, students compartmentalize 
the big ideas related to the concept in their 
conceptual systems and cannot relate them with 
each other.  

 The findings of this study provide evidence that if 
even one of the big ideas (i.e., the rate of change, 
the slope of tangent, and the limit) is ignored, the 
concept of derivative may not be fully understood 
relationally. From this point of view, some 
suggestions were given on teaching the derivative 
such as the contexts the concept of derivative 
should be considered and represented, how it 
should be introduced in the textbooks etc.                                                                                                                               

 The results indicated that certain issues raised in 
this manuscript regarding the teaching and learning 
of derivative concept (i.e., textbooks, university 
entrance exams, the exams used/prepared by 
teachers, role of teachers) require attention, and 
that further studies should be conducted for more 
extensive suggestions. 
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solving activities, givens and goals are already specified 
and words are carefully selected to make apparent the 
mathematical procedure required for solving the 
problem (Lesh, Yoon, & Zawojewski, 2006). However, 
problem-solving activities should be beyond a process 
where the givens, goals and procedures between them 
to accomplish an activity are precise (Wyndham & Säljö, 
1997). In addition, teachers and researchers are able to 
understand their students’ conceptual strengths and 
weaknesses during model-eliciting activities to enable 
them to prepare effective instruction based on these 
findings (Lesh, Hoover, Hole, Kelly, & Post, 2000). 
Moreover, model-eliciting activities provide teachers 
and researchers the opportunity to see students’ ways of 
thinking and possible conceptualization steps (Lesh & 
English, 2005; Lesh & Sriraman, 2005). Thus, the 
purpose of this study was to investigate students’ 
understanding of derivative through mathematical 
modeling tasks that require tackling of the big ideas 
underlying the concept of derivative and relationships 
between them.  

THEORETICAL FRAMEWORK 

In this study, students’ understanding of big ideas 
regarding the concept of derivative was investigated in 
the light of Skemp’s (1976) theory on conceptualization 
of mathematical understanding: relational understanding 
(i.e., knowing both what to do and why) and instrumental 
understanding (i.e., knowing rules without reasons). A 
relational understanding of the concept of derivative 
demands making sense of certain relations among 
derivative, the rate of change, the slope of tangent, and 
the concept of limit (see Figure 1). This requires not 

only knowing, but also being able to explain the role of 
these concepts in terms of what it means and why and 
how it is related to derivative. For instance, a student 
who understands the concept of derivative can explain 
how average rate of change approximates to the 
instantaneous rate of change, as well as how the slopes 
of secant lines approximate to the slope of tangent line 
by using the limit concept. Additionally, the student can 
explain why the instantaneous rate of change at a point 
is the same as the slope of the tangent at that point. On 
the other hand, an instrumental understanding of the 
derivative concept implies knowledge without making 
sense of what these concepts mean and how they are 
interrelated in the context of derivative. 

METHODOLOGY 

This study utilizes case study design. As described by 
Creswell (2009), “case studies are a strategy of inquiry in 
which the researcher explores in depth a program, 
event, activity, process, or one or more individuals” (p. 
13). The case in this study was the phenomenon 
regarding three graduate mathematics education 
students’ understanding of derivative in terms of their 
awareness of the big ideas and relationships among 
them in the context of mathematical modeling. 

Participants 

The participants of this study were three second-year 
mathematics education graduate students in a public 
university in Ankara, Turkey: Mete (M), Bahar (F), and 
Meltem (F) (all names are pseudonyms with genders 
shown in parentheses). As indicated by their CGPAs, 

 
Figure 1. Big ideas related to the concept of derivative 
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the participants were high performers who graduated 
from mathematics education departments of top 
ranking universities in Ankara. They were selected 
purposefully from among eight mathematics education 
graduate students based on their high computational 
performance in derivative as measured with tasks 
requiring the use of derivative concepts and rules (see 
Appendix B), as well as their mathematical interest and 
willingness to participate in the study through one-on-
one semi-structured interviews conducted prior to the 
study. The participants expressed that they had studied 
the concept of derivative during both secondary school 
and college and received high grades from tests related 
to the topic. Our purpose for selecting graduate 
students as participants was that they would be 
considered as successful and accomplished in the topic 
at all educational levels and thus investigating the nature 
of their conceptual systems and the extent to which they 
would build relational understanding would be more 
apparent compared to others of less experience and 
education in the topic. Small groups with three or four 
students are often recommended in the implementation 
of mathematical modeling activities in order to develop, 
describe, explain, manipulate the model, and to control 
important conceptual systems (Lesh & Yoon, 2004). As 
a result of this, three participants were decided to be 
included in the study. 

Modeling Task and Implementation Process 

During the data collection, the participants were 
asked to work around a “U” shaped table as a group on 
a mathematical modeling task entitled “An Emergency 
Patient with High Blood Pressure” (see Appendix A). 
They were provided with laptop computers with MS 
Excel spreadsheet software installed, should they wish 
to use it. The implementation process of the modeling 
task included three consecutive steps: the warm up 
activity, the model eliciting activity and the model 
exploration activity. The first step included participants’ 
reading and discussing a warm-up reading comprised of 
information from various health-related websites as a 
way to provide participants with common background 
information about the context of model eliciting activity 
(i.e., measuring the blood pressure). This phase took 
approximately fifteen minutes. The second phase was 
the model eliciting activity, in which the rate of change 
concept was integrated into a realistic problem context. 
In this phase, the participants were asked to read 
through the problem and individually propose their 
initial thoughts for the solution approaches and 
strategies in about ten minutes. After that, the 
participants were encouraged to focus on the 
relationships and patterns beyond cursory just the 
characteristics of the problem in order to generate 
different ideas and show mathematical usage in real-life 

situations. This phase intended to uncover participants’ 
ways of thinking while they create models for the 
problem situation. Including group work, this phase 
took approximately ninety minutes. In the final phase, 
that lasted approximately forty-five minutes, the 
participants were asked to work as a group on a model 
exploration activity consisting of some evaluation tasks 
developed to consolidate the fundamental ideas 
underlying the concept of derivative such as the rate of 
change, average rate of change and instantaneous rate of 
change. Researchers assumed the following roles during 
the implementation of the tasks: During the warm up 
activity, the researchers tried to check that the 
participants correctly understood the context of the 
modeling problem (high blood pressure) by asking 
probing questions such as “What does high blood 
pressure mean?” and “When are symptoms of high 
blood pressure observed?”. During the model eliciting 
and model exploration activities, without directing the 
participants towards a solution, the researchers 
attempted to guide them to understand the givens and 
goals of the problem. In this respect, we asked the 
participants questions to encourage them to think aloud 
about how they thought through the modeling task, 
what kind of ideas they generated, and what solution 
strategies they proposed (e.g., Why do you think so? 
How did you come to that conclusion?). In addition, 
researchers carefully listened to their way of thinking 
without making any judgments regarding the correctness 
of the thoughts and comments. However, when they 
were stuck in their thinking process, researchers 
provided them with a different point of view by 
questioning (e.g., How would you think if you would 
interpret these data graphically rather than numerically 
in a tabulated form?) and encouraging them to use the 
spreadsheet software to further their thinking. 

Data Sources and Analysis 

Data sources for the study included field notes 
(related to participants’ explanations that could show 
their types of understanding of derivative concept as 
relational or instrumental), worksheets that the 
participants produced while working on the modeling 
task, and audio and video recordings of the participants 
working as a group. For data analysis, firstly, the audio-
records were transcribed. Then, to make general sense 
about participants’ understanding of derivative from the 
data, researchers separately coded and analyzed the 
transcriptions, worksheets, and field notes in the light of 
Skemp’s (1976) notion of relational understanding of 
mathematics and the three big ideas related to the 
concept of derivative. After each researcher highlighted 
the sections related to the research purposes, these 
sections were compared and contrasted. Then, 
consensus was reached based on the discussions on 
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non-agreed sections by each researcher. After inter–
rater agreement was provided, the data were organized 
and analyzed accordingly. 

FINDINGS 

Rate of Change in Relation to the Derivative 

During the implementation of the modeling task, it 
was observed that none of the participants were able to 
make sense of the rate of change concept. Among the 
possible reasons for this might be their recollection of 
prior knowledge and their difficulty in making sense of 
derivative in a real-life context, other than the well-
known velocity-time context that students encounter in 
most textbooks. Although the context of the model 
eliciting activity (i.e., the High Blood Pressure) was not 
related to speed and velocity, participants preferred to 
use the term “the speed of change” in their attempt to 
understand the problem. However, they were not only 
unsure regarding when to use the terms speed and 
acceleration, but also what these concepts are and how 
they differ in nature. More precisely, they sometimes 
interpreted derivative as speed and sometimes as 
acceleration, as they perceived that the rate of change is 

the same thing as the speed of change. At the same 
time, it was observed that the participants could not 
make sense of the rate of change, unless the term “the 
speed of change” was used instead. The following 
excerpt from a dialogue among the participants indicates 
that they tried to interpret derivative in the speed-time 
context, but did not explain their interpretations and did 
not make sense of the term “the rate of change”. 

Researcher 1: What does the slope of tangent line 
mean? 

Bahar: I think it the slope of the tangent line is like 
acceleration in physics... 
Meltem: Yes... I think so too. 

Mete: By trying to interpret based on previous memorized 
knowledge, while the differentiation of the distance according to 
the time gives speed, the differentiation of the speed according to 

the time gives the acceleration The first derivative 
corresponds to the speed, and the second to the 
acceleration. 

Researcher 2: In this problem in the context of the 

model eliciting activity, what do you mean when you say 
the acceleration; to what does it correspond? 
Mete: I guess the slope of the tangent is the 
acceleration 

 
Figure 2. Meltem’s use of limit in the algebraic definition of derivative 

 

 
Figure 3. Bahar’s graphical/geometrical explanation of derivative 
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Bahar: If we investigate the speed of change, it 
corresponds to the acceleration 

Meltem is confirming this explanation by nodding her head. 
Researcher 2: What is the speed? 
Mete: The distance per unit time 
Researcher 1:  Where is the distance in this problem?  
Mete: ...hmm… 
Bahar: There is no distance here, but we only look at 
the decreasing speed of the blood pressure. 

Meltem: When reading the term “the rate of change” in the 

model eliciting activity Yeah...this...rate of change...It is 
related to derivative, isn’t it?  
Bahar: It’s obviously the speed of change... 

Limit in Relation to the Derivative 

In the implementation of the modeling task, 
participants presented two main difficulties in making 
sense of the role of the concept of limit in 
conceptualizing derivative. Their understanding of the 
limit in the context of derivative was limited to knowing 
the rule in the algebraic definition of derivative (see 
Figure 2). Therefore, the approximation of the average 
rate of change to the instantaneous rate of change had 
not made sense to them. On the other hand, they 
couldn’t explain the role of the limit in the geometric 
definition of derivative, in terms of the approximation 
of the slope of the secant lines to the slope of the 
tangent line. When trying to explain the geometric 
definition of derivative, they could only draw a graph 
based on their previous-knowledge where 
representations related to the slope such as the secant 
line and the tangent line were not placed on the graph 
(see Figure 3). The following excerpt from dialogue 
among the participants indicates that they had 
difficulties in making sense of the role of the concept of 
limit in conceptualizing derivative. 

Meltem: You remember... derivative was given with 

the limit formula… when writing the expression in Figure 

2 

Bahar: Right, even there was a graph when drawing the 

graph in Figure 3 on which derivative was explained. 

Mete: Even here pointing to the graph drawn by Bahar in 

Figure 3, the slope of the tangent line was the 
derivative... 

Slope of Tangent in Relation to the Derivative 

In the implementation, although the participants 
defined derivative correctly as “the slope of a tangent 
line which is drawn to the curve at a certain point”, it 
was observed that they could not make sense of the 
relation between the slope of the tangent and the 
derivative at a point, since they interpreted this 
definition as “equation of the tangent line at a certain 
point as a derivative of a function”. The following 
excerpt from dialogue among the participants in the 
implementation of the model eliciting activity indicates 
that the participants correctly provided the definition of 
derivative as mentioned above. 

Researcher 1: How do you determine the rate of 
change in blood pressure? 
Bahar: With respect to the slope of the tangent line. 
Researcher 2: Why? 
Meltem: Because the slope of the tangent line was 
the derivative. 
Mete: Yes. 

Moreover, the following excerpt from their dialogue, 
when they were trying to draw the graph of the first 
derivative of the given function in the model 
exploration activity (see Figure 4), indicates that the 
participants’ interpretation of this definition was lacking.  

Meltem: How is the first derivative function’s graph? 
Bahar: Hmm... The first derivative function’s 
graph… 

Mete:  It referring to the first derivative function is the 
line graph… …of the slope of the tangent line. 
Because derivative is the slope of the tangent line, so 
it should be a line. 
Meltem: Right. 

Rate of Change in Relation to the Limit 

Since the participants’ conceptualization of the 
concept of rate of change was “the speed of change”, 

 
Figure 4. Distance-height graph of the Roller Coaster Path in the model exploration activity where students 
were asked to provide the graph of the first derivative 
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they could not integrate the limit concept into the rate 
of change. That is to say, they could not realize that with 
the help of limit, the average rate of change 
approximates the instantaneous rate of change. The 
following excerpt from the participants’ dialogue while 
they were trying to explain the algebraic definition of 
derivative provided in Figure 2, indicated that they did 
not have a clear interpretation of the concepts of 
average rate of change and the instantaneous rate of 
change.  

Researcher 2: What does it referring to the expression 
( ) ( )f x h f x

h

 

 in Figure 2  mean? 
Meltem: You know... it is like that in the formula... 
Researcher 2: Why is this expression in the formula? 

The participants all went quiet for this question for about a 

minute. 
Researcher 2: Why does the limit of this expression 

give derivative? All participants again went quiet. 

Rate of Change in Relation to the Slope of 
Tangents 

The participants did not make sense of the concept 
of the instantaneous rate of change as the slope of the 
tangent line. Although all three participants defined 
derivative as the slope of the tangent line at a certain 
point when interpreting the change in the blood 
pressure on the graph (see Figure 5), during the process 
of determining the time of the maximum and minimum 
rates of decrease in blood pressure, their explanations 
did not include the concept of instantaneous rate of 
change since they thought that the change could not be 
examined instantaneously. The following excerpt shows 

that the participants lack a conceptual understanding of 
the concept of instantaneous rate of change. 

Bahar: At a certain point, the instantaneous rate of 
change cannot be mentioned, as the value of blood 
pressure measurement is already obvious. 
Mete: Right, there cannot be a change at a point.  
Meltem: I think so. 

Limit in Relation to the Slope of Tangents 

As is mentioned above, when trying to explain the 
geometric definition of derivative, the participants 
mentioned none of the representations related to the 
slope (e.g., the secant line, or the tangent line) on the 
graph (see Figure 3). Therefore, they could not interpret 
the role of the limit in the geometric definition of 
derivative. It was why they did not make sense of why 
the slope of the secant lines approximate to the slope of 
the tangent line. The following excerpt from the 
participants’ dialogue while they were trying to explain 
the geometric definition of derivative on Figure 3 shows 
this. 

Researcher 1: [Pointing out the two points as A and B in 
Figure 3] How would you represent the change on 
the graph from A to B? 
Bahar: … representation of the change on the 
graph… is it possible? 
Mete: I don’t know how to show it… 
Meltem: Umm... I think change cannot be shown on 
the graph… [None of the participants were able to draw the 
secant line on the graph from point A to point B] 
 
 
 

 
Figure 5. Time vs. blood pressure graph produced by the participants in MS Excel 
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DISCUSSION AND CONCLUSIONS 

In this study, in spite of the common difficulties of 
students at all levels in linking word problems to the 
mathematical ideas (Kaiser, Blomhøj, & Sriraman, 2006; 
Lesh & Doerr, 2003a, 2003b), none of the participants 
had difficulty to connect the mathematical concept (i.e., 
derivative) embedded in the model eliciting and model 
exploration activities. However, the findings revealed 
that the participants’ understanding of derivative was 
not relational. First of all, the findings showed that none 
of the participants realized and explained the meaning 
of the rate of change and how it is related to the 
concept of derivative. This result is consistent with 
those reported in the literature, that both high school 
and undergraduate students are not making sense of the 
rate of change and are not aware of the relationship 
between the derivative and the rate of change concepts 
(Bezuidenhout, 1998; Bingölbali, 2008; Hauger, 2000; 
Heid, 1988). As the participants in this study preferred 
to use the term “speed of change” instead of “rate of 
change”, the semantics or denotation of the word 
“speed” in Turkish might be considered as an important 
issue here. The term “speed of change” is used in the 
meaning of “rate of change” in the previous Turkish 
national high school mathematics curriculums (Talim ve 

Terbiye Kurulu Başkanlığı TTKB, 2005, 2011), before 
it was subsequently changed in 2013. For the twelfth 
grade, for example, it was stated that “the derivative is 
the general name for the instantaneous speed” in an 
application problem in the context of velocity-time 
(TTKB, 2011, p. 295). Furthermore, the same 
terminology is used on some other application problems 
with different contexts, such as the “speed of change of 
volume”, the “speed of learning” and the “speed of 
change of unemployment” (TTKB, 2011, p. 302, 312). 
On the other hand, in the revised current curriculum 
(TTKB, 2013), the terms “rate of change” and 
“instantaneous rate of change” are used and students 
are expected to “describe the rate of change taking 
advantage of physical and geometrical models” (TTKB, 
2013, p. 46). However, there is no particular emphasis 
on the usage of physical and/or geometrical models, 
other than those in the velocity-time context. According 
to Bingölbali (2008), a lack of such emphasis during 
instruction might restrict the association between 
derivative and change to the velocity context. Indeed, 
the results of this study indicate that the context of the 
model eliciting activity (i.e., High Blood Pressure) 
caused problems for the participants as they tried to 
reason with the velocity-time context. From this point 
of view, while teaching the derivative, it would be more 
appropriate to start and focus on approaches that 
provide students with real-life contexts related to the 
rate of change other than the velocity-time one as it has 
become a prototypical example. 

Another important finding of this study is that the 
participants were unaware of the connection between 
the average rate of change and the instantaneous rate of 
change. In other words, they could not relate the rate of 
change to the concept of limit. Moreover, it was 
observed that the participants did not make sense of the 
instantaneous rate of change as the slope of the tangent 
line. These results are consistent with those of Orton 
(1983), arguing that the distinction between the average 
rate of change and instantaneous rate of change may 
have little meaning to some students. These results 
indicated that none of the participants in this study 
knew and could explain the meaning of the rate of 
change, why the rate of change is related to derivative, 
and how the rate of change is related to the limit and 
the slope of tangent line. Therefore, in the light of the 
theoretical framework used in this study, it can be 
concluded that the participants’ understanding of the 
rate of change in relation to the concept of derivative 
was rather instrumental. 

On the other hand, the participants provided the 
definition of derivative as the slope of a tangent line 
drawn to the curve at a certain point. However, they 
interpreted the equation of the tangent line at a certain 
point as the derivative function of the function, and 
similar findings are also reported by others (Amit & 
Vinner, 1990; Ubuz, 2001). According to Amit and 
Vinner (1990) an underlying cause of such a result could 
be attributed to the role of memorizing/learning the 
concept of derivative through ignoring important words 
in the mathematical sense. Another important cause 
could be the lack of the graph of the derivative function 
as a visual object directly referring to the derivative 
function along with the tangent line, which indirectly 
refers to it. Most textbooks in both high school level 
(Ünlü & Er, 2013) and undergraduate level (Steward, 
2003), after introducing the symbolic/algebraic 
definition, provide the geometric interpretation that the 
slope of the tangent line to the graph of a function f at a 
certain point is defined as the derivative of the function 
at that point. In this geometric interpretation, however, 
there is no geometric construction (i.e., the graph of the 
derivative function) directly referring to the derivative 
function. Instead, there is only the geometric 
construction (i.e. the tangent line) referring to the 
derivative function indirectly. From this point of view, 
while introducing the geometric definition of the 
derivative concept in the textbooks, it might be better to 
emphasize derivative as a function and construct its 
graph through associating the slopes of different tangent 
lines of the curve representing the different slopes. In 
the grand scheme of things, considering that 
connections among big ideas underlying a concept and 
its definitions are often hidden in the textbooks 
(Lithner, 2004; Raman, 2004) and mathematics 
textbooks are the main source of reference for both 
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students and teachers (Poisson, 2011), it would be vital 
to provide connections with the big ideas involved with 
such a concept.  

An additional result on the slope of tangent was that 
the participants did not make sense of the 
approximation of the slope of the secant lines to the 
slope of the tangent line. Thus, they could not interpret 
the role of the limit in the geometric definition of 
derivative. These results regarding the slope of the 
tangent line indicated that although the participants 
knew the definition of derivative as the slope of tangent, 
none of them could explain the meaning of the slope of 
the tangent line in terms of why and how it is related to 
the derivative and to the limit. This implied that the 
participants’ understanding of the slope of the tangent 
as related to the concept of derivative was rather 
instrumental. 

Finally, the findings of this study regarding the limit 
revealed that despite participants knowing of the 
existence of the limit formula in the algebraic definition 
of derivative, they could not make sense of the role of 
limit in both the algebraic and geometric definitions of 
derivative. The reason for this might be the fact that 
students have difficulties in solving problems that 
require using the relationship between the derivative and 
limit, as indicated by Orton (1983). From Skemp’s 
(1976) point of view regarding mathematical 
understanding, these results indicate that the 
participants’ understanding of the limit concept in 
relation to the concept of derivative was not relational. 
In this study, it can also be concluded that the 
participants’ understanding of derivative was not 
relational. They could not explain the role of the big 
ideas related to the concept of derivative, despite the 
fact that they had been successful in the courses related 
to derivative. Although there might be other factors, 
this could be explained by the way derivative is 
handled/emphasized in exams. In the university 
entrance exams, for instance, solving mathematical tasks 
require students often to use reasoning founded on 
copying algorithms or recalling facts (Bergqvist, 2007; 
Köğce, 2005). Moreover, the exams used/prepared by 
teachers to evaluate their students’ success at any level 
depend mostly on procedural understanding instead of 
conceptual understanding (Flemming & Chambers, 
1983; Senk, Beckmann, & Thompson, 1997). Thus, 
teachers and stakeholders should support the use of 
exams composed of well-balanced tasks measuring 
conceptual and procedural knowledge. Moreover, 
teachers should use problems involving less 
mathematical terms and put translation of daily life 
language into mathematical language in order to increase 
their students’ conceptual understanding (Battye & 
Challis, 1997; English, 2003; English & Lesh, 2003; 
Gravemeijer & Doorman, 1999; Lesh & Doerr, 2003a, 
2003b).  

Although this study is limited in terms of the 
number of participants, the results indicate that issues 
raised require further attention, and that studies should 
be conducted on more extensive suggestions. For 
example, this study provides evidence to some degree 
that further research support is required in the role of 
properly selected problem situations (tasks) and proper 
application strategies that enable teachers to investigate 
their students’ understanding and gain insights into what 
their students know so that they can attempt to remedy 
any issues, if they exist, and to prevent 
compartmentalization of the big ideas in students’ 
conceptual systems for the improvement of students’ 
(relational) understanding. Since, unless a mathematical 
concept is understood relationally, students may well 
compartmentalize the big ideas related to the concept in 
their conceptual systems and therefore cannot relate 
them with each other. This study claims that the 
concept of derivative should be introduced and 
developed in relation to three big ideas (i.e., the rate of 
change, the slope of the tangent, and the limit). The 
findings of this study provide evidence that if even one 
of these big ideas is ignored, the concept of derivative 
may not be fully understood relationally due to the 
compartmentalization of these big ideas in students’ 
conceptual systems. If this happens to be the case, even 
though students can correctly solve differentiation 
problems, they may not be actually making sense of 
what the concept of derivative truly means.  
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Appendix A: An Emergency Patient with High Blood Pressure 
Assume that you are a doctor in charge of emergency services. In an evening when you were on duty in the 

emergency room, a patient with symptoms of high blood pressure arrives at the hospital at 21:15. You measured his blood 

pressure and seeing that it was high, prescribed an appropriate dose of a high blood pressure-lowering drug. Next, you asked a 
nurse to measure the patient’s blood pressure as frequently as possible and to record the measurement time and the value of 
systolic and diastolic pressures on the patient’s chart, and to inform you if the situation changed. After approximately two 
hours, you went to check on the patient’s situation and the nurse handed you the patient chart (as shown below). 

 

Time of Measurement Systolic Pressure 
(mmHg) 

Diastolic Pressure 
(mmHg) 

21:15 215 128 

21:20 198 117 

21:28 178 102 

21:40 158 91 

22:19 126 82 

23:20 123 81 

 
You report to the Chief of the emergency department with detailed information about the patient’s status with regard to 

the following questions: 

 How has the patient’s blood pressure changed during their period of stay?  

 At what times was the rate of change in the blood pressure of the patient the maximum and minimum? 

 Approximately when did the symptoms of high blood pressure disappear? 

 Emergency room policy states that a patient cannot be discharged unless his blood pressure is considered normal. Do you 
think that the patient can be discharged? Explain your answer as when they can be discharged, and why. 

 
Appendix B: Taks Used in Selecting the Participants 

 Find an equation of the tangent line to the curve at the given point. 

a)  

b)  

c)  

 Find the derivatives of the following functions. 

a)  

b)  

c)  

 Solve the following problems. 

a) If A is the area of a circle with radius r and the circle expands as time passes, find  in terms of . 

b) Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a 
constant rate of 1m/s, how fast is the area of the spill increasing when the radius is 30 meters? 

c) At noon, ship A is 100 km west of ship B. Ship A is sailing south at 35 km/h and ship B is sailing north at 25 km/h. 
How fast is the distance between the ships changing at 4.00 p.m.? 

(Source: Steward, J. (2003). Calculus (5th Ed.). Belmont, CA: Thomson Brooks/Cole) 

 


